
Date:

a comparison of two quantities by division

> an equation stating that two ratios are equal

 $\underline{\mathbb{U}}_{-}$ navigational items.

 $\underline{^{\varrho}}$ globes. There are __

There are _____ paper maps.

For every $\frac{2}{2}$ paper maps, there are $\frac{5}{2}$ globes.

RATIOS CAN BE EXPRESSED 3 WAYS:

Written Form:

Paper Maps to Globes

2 to 3

2 for each 3

2 for every 3

Odds Notation:

Fractional Notation:

FRACTIONS AND RATIOS ARE NOT THE SAME!

Fractions: represent a part, represent <u>ONE</u> number

Ratios: represent a comparison of TWO quantities 000

RATIOS CAN COMPARE QUANTITIES 3 WAYS:

PART to PART: Paper Maps to Globes

2 to 3

2:3

PART to WHOLE:

P.M. to All

4 to 10

4:10

Globes to All

6 to 10 6:10

WHOLE to PART:

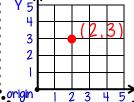
All to Globes All to P.M. 10 to 4 10 to 6

10:6

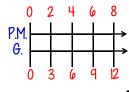
pay attention to the wording! Your ratio quantities must stay in order to make sensel

RATIOS CAN BE VISUALLY REPRESENTED **SEVERAL** WAYS:

Models: Paper Maps to Globes


Ratio Tables:

•				
•	P.M.	2	4	6
•	G.	3	9	9


Tape Diagrams:

There are 3 globes for every 2 maps. If there are 6 globes, how many maps are there?

	<u> </u>	
2	2	2

Coordinate Planes: Double Number Line

